MILITARY SPECIFICATION

SEMICONDUCTOR DEVICE, TRANSISTOR, PNP, GERMANIUM, POWER TYPES 2N1042 THROUGH 2N1045

This specification is mandatory for use by all Departments and Agencies of the Department of Defense.

1. SCOPE

- 1.1 Scope. This specification covers the detail requirements for PNP. germanium. power, transistors.
- * 1.2 Physical dimensions. See figure 1.
- * 1.3 Maximum ratings.

P _T 1/ To = 25°C	P _T 1/ T _C = 25°C V _{CBO}				V _{EBO}	I _C	T _{stg} and T _{op}
10 - 20 0	2N1042	2N1043	2N1044	2N1045			
<u>w</u>	<u>Vdc</u>	<u>Vdc</u>	Vdc	<u>Vdc</u>	<u>Vdc</u>	Adc	<u>°c</u>
20	-40	-60	-80	-100	-20	-3	-55 to +100

 $\underline{1}$ / Derate linearly 267 mW/°C for $T_C > 25$ °C.

* 1.4 Primary electrical characteristics at TC = 25°C ±3°C.

Limits	hFE V _{CE} = -1 Vdc I _C = -3 Adc	hFE V _{CE} = -0.5 Vdc I _C = -50 mAdc	V _{CE} (sat) I _C = -3 Adc I _B = -300 mAdc	hfe V _{CE} = -1.5 Vdc I _C = -0.5 Adc f = 125 kHz	V _{BE} V _{CE} = -1 Vdc I _C = -3 Adc
		•	<u>Vdc</u>		<u>Vdc</u>
Min Max	20 60	50 250	-0.75	2 10	-1.5

2. APPLICABLE DOCUMENTS

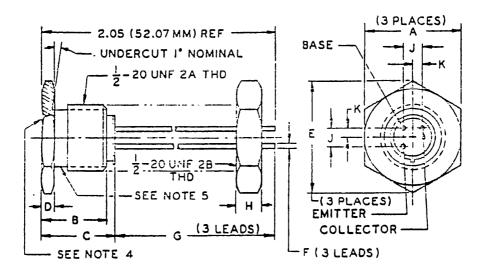
2.1 The following documents, of the issue in effect on date of invitation for bids or request for proposal, form a part of the specification to the extent specified herein.

SPECIFICATION

MILITARY

MIL-S-19500 - Semiconductor Devices, General Specification for.

MIL-S-19500/137C


STANDARDS

MILITARY

* MIL-STD-202 - Test Methods for Electronic and Electrical Component Parts. MIL-STD-750 - Test Methods for Semiconductor Devices.

(Copies of specifications, standards, drawings, and publications required by suppliers in connection with specific procurement functions should be obtained from the procuring activity or as directed by the contracting officer.)

- 3. REQUIREMENTS
- 3.1 General. Requirements shall be in accordance with MIL-S-19500, and as specified herein.
- 3.2 Abbreviations, symbols, and definitions. The abbreviations, symbols, and definitions used herein are defined in MIL-S-19500.
- 3.3 Design, construction, and physical dimensions. Transistors shall be of the design, construction, and physical dimensions shown on figure 1.
- 3.3.1 Lead material and finish. Lead material shall be Kovar or alloy 52. Lead finish shall be gold-plated. (Leads may be tin-plated if specified in the contract or order, and this requirement shall not be construed as adversely affecting the qualified-product status of the device, or applicable JAN marking (see 6.2).
- * 3.3.1.1 Lead material. If lead material need be specified, it shall be specified in the contract or order (see 6.2).
- 3.4 Performance characteristics. Performance characteristics shall be as specified in tables I, II. and $\overline{\text{III}}$.
- * 3.5 Marking. Devices shall be marked in accordance with MIL-S-19500.
 - 4. QUALITY ASSURANCE PROVISIONS
- 4.1 Sampling and inspection. Sampling and inspection shall be in accordance with MIL-S-19500, and as specified herein.
- * 4.2 Qualification inspection. Qualification inspection shall consist of the examinations and tests specified in tables I, Π , and Π .
- * 4.3 Quality conformance inspection. Quality conformance inspection shall consist of group A. B, and C inspections.
- 4.3.1 Group A inspection. Group A inspection shall consist of the examinations and tests specified in table I.
- 4.3.2 <u>Group B inspection.</u> Group B inspection shall consist of the examinations and tests specified in table Π .
- * 4.3.3 Group C inspection. Group C inspection shall consist of the tests specified in table III. This inspection shall be conducted on the initial lot and thereafter every six months during production.

DIMENSIONS								
LTR	INC	HES	MILLIM	₽.102				
	MIN	MAX	MIN	MAX	`E S			
A	, 740	. 760	18.80	19.30	ß			
В	. 485	.515	12.32	13.08				
С		. 550		13.97				
D	. 083	. 103	2.11	2.62				
E		.875		22, 23	6			
F	, 022	. 028	. 56	. 71	7			
G	1.500	1.750	38, 10	44.45	7			
H	.177	.197	4,50	5,00				
J	. 1314	. 1514	3.34	3.85				
K	. 070	7 Nom	1.8	0 Nom				

NOTES:

- 1. Metric equivalents (to the nearest .01 mm) are given for general information only and are based upon 1 inch = 25.4 mm.
- 2. The orientation of the leads in relation to the hex flats is not controlled.
- The collector shall be electrically connected to the case.
 Temperature measurement point 0.160 nominal from center of heat sink.
- 5. Thread relief is 0.090 max. by 0.430 dia. nominal.
- 6. Three places.7. Three leads.

FIGURE 1. Physical dimensions of transistor types 2N1042 through 2N1045.

_		MIL-STD-750			Limits		
Examination or test	Method	Details (see 4, 4, 3)	LTPD	Symbol	Min	Жах	Unit
Subgroup 1			10				
Visual and mechanical examination	2071						
Subgroup 2			5				
Breakdown voltage, collector to base	3001	Blas condition D: IC = -750 µAdc					
2N1042 2N1043 2N1044 2N1045				BVCBO	-40 -60 -80 -100		Vdc Vdc Vdc Vdc
Breakdown voltage, collector to emitter	3011	Bias condition D; I _C = -100 mAdc					
2N1042 2N1043 2N1044 2N1045				BV _{CEO}	-30 -40 -50 -60		Vdc Vdc Vdc Vdc
Emitter to base cutoff current	3061	Bias condition D; V _{EB} = -20 Vdc		IEBO		-650	μAdc
Collector to emitter cutoff current	3041	Bias condition A; VBE = +0.2 Vdc					į
2N1042 2N1043 2N1044 2N1045		V _{CE} = -40 Vdc V _{CE} = -60 Vdc V _{CE} = -80 Vdc V _{CE} = -100 Vdc		ICEX		-650 -650 -650 -650	μAdc μAdc μAdc μAdc
Collector to base cutoff current	3036	Bias condition D					
2N1042 2N1043 2N1044 2N1045		VCB = -20 Vdc VCB = -30 Vdc VCB = -40 Vdc VCB = -50 Vdc		ІСВО		-125 -125 -125 -125	μAdc μAdc μAdc μAdc
Collector to emitter cutoff current	3041	Bias condition D					
2N1042 2N1043 2N1044 2N1045		V _{CE} = -15 Vdc V _{CE} = -20 Vdc V _{CE} = -25 Vdc V _{CE} = -30 Vdc		ICEO		-25 -20 -20 -20	mAdc mAdc mAdc mAdc
Subgroup 3			5				
Forward-current transfer ratio	3076	V _{CE} = -1 Vdc; I _C = -3 Adc pulsed (see 4.4.1)		hFE	20	60	
Forward-current transfer ratio	3076	V _{CE} = -1 Vdc: I _C = -1 Adc puised (see 4.4.1)		hFE	30	150	
Forward-current transfer ratio	3076	V _{CE} = -0.5 Vdc; I _C = -50 mAdc		hFE	50	250	

TABLE L Group A inspection. - Continued

	-11000	L Group A inspection Con	17				
Examination or test		MIL-STD-750	LTPD		Limits		
Examination of less	Method	Details (see 4, 4, 3)	LIPD	Symbol	Min	Max	Unit
Subgroup 3 - continued							
Collector to emitter voltage (saturated)	3071	$I_C = -3$ Adc; $I_B =$ -300 mAdc pulsed (see 4. 4. 1)	į	V _{CE} (sat)		-0.75	Vdc
Collector to emitter voltage (saturated)	3071	I _C = -1 Adc: I _B = -100 mAdc pulsed (see 4.4.1)		V _{CE} (sat)		-0.25	Vdc
Base emitter voltage (nonsaturated)	3066	Test condition B; V _{CE} = -1 Vdc; I _C = -3 Adc pulsed (see 4.4.1)		VBE		-1.5	Vdc
Base emitter voltage (nonsaturated)	3066	Test condition B; V _{CE} = -1 Vdc; I _C = -50 mAdc		V _{BE}		-0.5	Vdc
Subgroup 4			5				
Small-signal short-circuit forward-current transfer ratio	3206	$V_{CE} = -1.5 \text{ Vdc}; I_{C} = -0.5 \text{ Adc}$		h _{fe}	25	100	
Magnitude of small-signal short-circuit forward- current transfer ratio	3306	V _{CE} = -1.5 Vdc; I _C = -0.5 Adc; f = 125 kHz		h _{fe}	2	10	
Subgroup 5			10				
High-temperature operation:		T _C = +85°C					
Collector to base cutoff current	3036	Bias condition D					
2N1042 2N1043 2N1044 2N1045		V _{CB} = -20 Vdc V _{CB} = -30 Vdc V _{CB} = -40 Vdc V _{CB} = -50 Vdc		ГСВО		-5 -5 -5 -5	mAdc mAdc mAdc mAdc
Collector to emitter cutoff current	3041	Bias condition A; VBE = +0.2 Vdc					
2N1042 2N1043 2N1044 2N1045		V _{CE} = -20 Vdc V _{CE} = -30 Vdc V _{CE} = -40 Vdc V _{CE} = -50 Vdc		ICEX		-5 -5 -5 -5	mAdc mAdc mAdc mAdc
Forward-current transfer ratio	3076	V _{CE} = -1 Vdc; I _C = -3 Adc pulsed (see 4.4.1)		hFE	20	75	
Low-temperature operation:		T _C = -55°C	1				
Forward-current transfer ratio	3078	V _{CE} = -1 Vdc; I _C = -3 Adc pulsed (see 4.4.1)		hFE	15		

MIL-S-19500/137C

TABLE II. Group B inspection.

							Ι	
Examinat	Examination or test		MIL-STD-750	LTPD		Limits		
		Method	(see 4. 4. 3)		Symbol	Min	Max	Unit
Subj	group 1			20				
Physical din	nensions	2066	(See figure 1)					
Subs	group 2			15				
Solderability	7	2026						
Thermal sho	ock (temperature	1051	Test condition A, except in step 3, $T_A = +100^{\circ} + 5$, $-0^{\circ}C$					
Thermal sho	ock (glass strain)	1056	Test condition A	•				
Hermetic se	al	1071	Test condition G or H for fine leaks; test condition A, C, D or F for gross leaks				5x10 ⁻⁷	atm cc/s
Moisture res	sistance	1021						
End points:								
Collector t	o base cutoff	3036	Bias condition D					
2N1 2N1	1042 1043 1044 1045		V _{CB} = -20 Vdc V _{CB} = -30 Vdc V _{CB} = -40 Vdc V _{CB} = -50 Vdc		I _{CBO}		-125 -125 -125 -125	μAdc μAdc μAdc μAdc
Forward-c	urrent transfer	3076	V _{CE} = -1 Vdc; I _C = -3 Adc pulsed (see 4.4.1)		h _{FE}	20	60	
Subg	group 3			10				
Shock		2016	Nonoperating; 1,500 G; 0.5 ms; 5 blows in each orientation: X_1 , Y_1 , Y_2 , and Z_1					•••
Vibration, v	ariable frequency	2056						
Constant acc	celeration	2006	10,000 G in each orientation: X_1 , Y_1 , Y_2 and Z_1					
End points: (Same as s	ubgroup 2)							
* Subg	roup 4	<u> </u>		10				ļ
Terminal str	rength (lead	2036	Test condition E					
Terminal str torque)	rength (stud	2036	Test condition D2; torque = 20 in-lbs; time = 15 s			40 mg 40		

TABLE IL Group B inspection. - Continued

TABLE II. Group B inspection Continued											
1	Examination or test		MIL-STD-750		,	Li	mits				
	Cauminution of 1831	Method	(see 4.4.3)	LTPD	Symbol	Min	Max	Unit			
	Subgroup 4 - Continued										
	End points:										
	Hermetic seal	1071	Test condition G or H for fine leaks; test condition A, C, D or F for gross leaks				5x10 ⁻⁷	atm cc/s			
+	Subgroup 5			20	ı						
İ	Salt atmosphere (corrosion)	1041									
•	Subgroup 6			7							
	High-temperature life (nonoperating)	1032	T _{stg} = +100°C; time = 340 hours (see 4.3.4)		•••						
	End points:										
	Collector to base cutoff current	3036	Bias condition D								
	2N1042 2N1043 2N1044 2N1045		VCB = -20 Vdc VCB = -30 Vdc VCB = -40 Vdc VCB = -50 Vdc		ICBO		-250 -250 -250 -250	μAdc μAdc μAdc μAdc			
	Collector to emitter cutoff current	3041	Bias condition A; V _{BE} = +0.2 Vdc								
	2N1042 2N1043 2N1044 2N1045		V _{CE} = -40 Vdc V _{CE} = -60 Vdc V _{CE} = -80 Vdc V _{CE} = -100 Vdc		ICEX		-1.3 -1.3 -1.3 -1.3	mAdc mAdc mAdc mAdc			
	Forward-current transfer ratio	3076	$V_{CE} = -1 \text{ Vdc}$; $I_{C} = -3 \text{ Adc}$ pulsed (see 4.4.1)		hFE	16	72				
-	Subgroup 7			7				1			
	Steady-state operation life	1027	+25°C < T _C < +55°C V _{CE} = -20 Vdc								
1			$P_{T} = 12W + \left(\frac{55^{\circ}C - TC}{3.75^{\circ}C/W}\right)$				ļ				
			time = 340 hours (see 4.3.4)								
1	End points: (Same as subgroup 6)										

7

MIL-S-19500/137C

TABLE III. Group C inspection.

Englishting as took	MIL-STD-750				Lir	nits	
Examination or rest	Method	Details (see 4, 4, 3)	LTPD	Symbol	Min	Max	Unit
Subgroup 1			10				
Thermal resistance (junction to case)	3136	$T_1 = T_C = 30 \pm 5^{\circ}C$ $T_2 = T_J = 95 \pm 5^{\circ}C$ IC (measurement) = -50 mAdc		^θ J-C	***	3.75	°C/W
Subgroup 2			10				
Resistance to solvents		MIL-STD-202, Method 215 (see 4.4.2)					
Subgroup 3			λ = 10	•			
High-temperature life (nonoperating)	1031	$T_{stg} = +100^{\circ}C$ (see 4.3.4)					
End points: (Same as subgroup 6 of group B)							•
Subgroup 4			λ = 10				
Steady-state operation life	1026	$+25$ °C \leq T _C \leq +55°C V _{CE} = -20 Vdc					
		$P_{T} = 12W + \frac{55^{\circ}C - T_{C}}{3.75^{\circ}C/W}$					
•		(see 4.3.4)					
End points: (Same as subgroup 6 of group B)							
	Thermal resistance (junction to case) Subgroup 2 Resistance to solvents Subgroup 3 High-temperature life (nonoperating) End points: (Same as subgroup 6 of group B) Subgroup 4 Steady-state operation life End points: (Same as subgroup 6 of	Subgroup 1 Thermal resistance (junction to case) Subgroup 2 Resistance to solvents Subgroup 3 High-temperature life (nonoperating) End points: (Same as subgroup 6 of group B) Subgroup 4 Steady-state operation life 1026 End points: (Same as subgroup 6 of group B)	Examination or test Method Details (see 4.4.3)	Examination or test Method Details (see 4.4.3) 10	Subgroup 1 10 10 10	Method Details (see 4, 4, 3) LTPD Symbol Min	Exemination or test Method Detrils (see 4. 4. 3) Detrils (see 4. 4. 3) LTPD Symbol Min Max Subgroup 1 Thermal resistance (junction to case) T1 = TC = 30 ±5°C T2 = TJ = 95 ±5°C IC (measurement) = -50 mAdc Subgroup 2 Resistance to solvents Subgroup 3 High-temperature life (nonoperating) End points: (Same as subgroup 6 of group B) Subgroup 4 Steady-state operation life 1026 $+25°C \le TC \le +55°C$ $VCE = -20 Vdc$ $PT = 12W + \frac{55°C - TC}{3.75°C/W}$ (see 4. 3. 4) End points: (Same as subgroup 6 of Same as Su

- 4.3.4 Group B and group C life-test samples. Samples that have been subjected to group B, 340-hour life-test, may be continued on test to 1,000 hours in order to satisfy group C life-test requirements. These samples shall be predesignated, and shall remain subjected to the group C 1,000-hour acceptance evaluation after they have passed the group B, 340-hour acceptance criteria. The cumulative total of failures found during 340-hour test and during the subsequent interval up to 1,000 hours shall be computed for 1,000-hour acceptance criteria, see 4.3.3.
- * 4.3.5 Lot representative (group B and C inspections). At the option of the manufacturer, the highest voltage type represented in the lot may be used for group B and C inspections as representative of a lot containing the several types.
 - 4.4 Methods of examination and test. Methods of examination and test shall be as specified in tables I, II, and III.
- * 4.4.1 Pulse measurements. Conditions for pulse measurement shall be as specified in section 4 of MIL-STD-750.
- 4.4.2 Resistance to solvents. Transistors shall be subjected to tests in accordance with method 215 of MIL-STD-202. The following details shall apply:
 - (a) All areas of the transistor body where marking has been applied shall be brushed.
 - (b) After subjection to the tests there shall be no evidence of mechanical damage to the device and markings shall have remained legible.

- * 4.4.3 Inspection conditions. Unless otherwise specified herein, all inspections shall be conducted at a case temperature (T_C) of 25°C ±3°C.
 - 5. PREPARATION FOR DELIVERY
- * 5.1 See MIL-S-19500, section 5.
 - 6. NOTES
 - 6.1 Notes. The notes specified in MIL-S-19500 are applicable to this specification.
- * 6.2 Ordering data.
 - (a) Lead finish if other than gold-plated (see 3.3.1).
 - (b) Lead material (see 3.3.1.1).
- 6.3 Changes from previous issue. The margins of this specification are marked with an asterisk to indicate where changes (additions, modification, corrections, deletions) from the previous issue were made. This was done as a convenience only and the Government assumes no liability whatsoever for any inaccuracies in these notations. Bidders and contractors are cautioned to evaluate the requirements of this document based on the entire content irrespective of the marginal notations and relationship to the last previous issue.

Custodians: Army - EL Navy - EC Air Force - 17

Review activities: Army - MU, MI Air Force - 11, 70, 80 DSA - ES

User activities: Army - SM Navy - AS, CG, MC, OS, SH Air Force - 13, 15, 19 Preparing activity: Army - EL

Agent: DSA - ES

(Project 5961-0238)

INSTRUCTIONS: In a continuing effort to make our standardization documents better, the DoD provides this form for use in submitting comments and suggestions for improvements. All users of military standardization documents are invited to provide suggestions. This form may be detached, folded along the lines indicated, taped along the loose edge (DO NOT STAPLE), and mailed. In block 5, be as specific as possible about particular problem areas such as wording which required interpretation, was too rigid, restrictive, loose, ambiguous, or was incompatible, and give proposed wording changes which would alleviate the problems. Enter in block 6 any remarks not related to a specific paragraph of the document. If block 7 is filled out, an acknowledgement will be mailed to you within 30 days to let you know that your comments were received and are being considered.

NOTE: This form may not be used to request copies of documents, nor to request waivers, deviations, or clarification of specification requirements on current contracts. Comments submitted on this form do not constitute or imply authorization to waive any portion of the referenced document(s) or to amend contractual requirements.

(Fold along this line)

(Fold along this line)

DEPARTMENT OF THE ARMY

OFFICIAL BUSINESS
PENALTY FOR PRIVATE USE \$300

BUSINESS REPLY MAIL

RST CLASS PERMIT NO. 12062 V

POSTAGE WILL BE PAID BY THE DEPARTMENT OF THE ARMY

COMMANDING GENERAL
U.S. ARMY ELECTRONICS COMMAND
ATTN: AMSEL-PP-ED
FORT MONMOUTH, NEW JERSEY 07703

NO POSTAGE NECESSARY IF MAILED IN THE UNITED STATES

ere, ere ere ere er

to the color of the section

Both of the transfer of